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Introduction

The integers provide an inherent improvement on the naturals by providing
the additive inverse. Likewise, the rationals provide the multiplicative in-
verse and the reals provide completeness. The complex numbers offer the
additional advantage in that they are algebraically closed, in that C contains
the solution to every polynomial. This property is the key motivation for
the study of complex analysis.

In this course we primarily cover functions from C → C paired with the
idea of being holomorphic, the complex analog to being differentiable. The
key difference here is the lack of a total ordering as in the reals. We study
holomorphic functions using the contour integral, regularity (infinite differ-
entiability), and analytic continuation.
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1 Preliminaries

1.1 Complex Numbers and the Complex Plane

This is a very basic review of what complex numbers are and their properties.

1.1.1 Basic Properties

A complex number takes the form z = x + iy where x, y ∈ R and
i2 = −1. We call x the real part and y the imaginary part of z, written
as x = Re(z) and y = Im(z). The field of complex numbers is denoted with
the symbol C. We visualize the complex numbers with a mapping C→ R2,
where x + iy which is equivalent to the point (x, y). In this analog, we
call the x-axis the real axis and the y-axis the imaginary axis. Complex
numbers are a field, and therefore have the commutative, associative, and
distributive properties for addition and multiplication – although it should
be noted that the exact meaning of addition and multiplication is not the
same as it is for the reals.

The notion of length is the same as in Euclidian space, in that |z| =
(x2 + y2)1/2 (which makes sense with our relation to R2). We addition-
ally adhere to the triangle inequality with, for two complex numbers z and
w, that

||z| − |w|| ≤ |z − w|.

The conjugate of a complex number z is denoted z̄, with z̄ = x − iy, and
represents a reflection across the real axis. In turn we get the following:

Re(z) =
z + z̄

2
, Im(z) =

z − z̄
2i

, |z|2 = zz̄,
1

z
=

z̄

|z|2
.

Any non-zero complex number can be written as z = reiθ, called polar
form. θ is the argument, and is sometimes denoted arg z. Also recall
Euler’s formula, that

eiθ = cos θ + i sin θ.

This introduction of polar form is why we mentioned earlier that the “mean-
ing” of multiplication is not the same as it is for reals; note that the product
of z, w ∈ C = zw = (reiθ)(seiϕ) = rsei(θ+ϕ) is a rotation combined with a
dilation (a homothety in R2).
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1.1.2 Convergence

Convergence

A sequence {zn}∞n=1 is said to converge to w ∈ C if

lim
n→∞

|zn − w| = 0.

An interesting addition is that zn → w if and only if Re(zn) → Re(w) and
Im(zn)→ Im(w). An equivalent condition is that the sequence is Cauchy;
that is, for ε > 0 there exists N ∈ N such that for n,m > N we have
|zn − zm| < ε. A consequence of the convergence of the real and imaginary
parts of a complex sequence is that the complex numbers are necessarily
complete.

1.1.3 Topology Review in the Complex Plane

This is a brief review of topological concepts from Math104, applied to the
complex plane (which is again identical to R2). For z0 ∈ C and r > 0, the
open disc Dr(z0) of radius r about z0 is the set of all complex numbers
within distance r of z0:

Dr(z0) = {z ∈ C : |zn − z0| < r}.

The closed disc changes the < to a ≤ and is denoted D̄r(z0). The boundary
of either the open or closed disc is the circle Cr(z0) = {z ∈ C : |zn−z0| = r}.
Given Ω ⊂ C, z0 is an interior point of Ω if there exists an open disc with
r > 0 contained in Ω. The set of all interior points is the interior; a set
consisting exclusively of interior points is open. The complement of an open
set is closed. A limit point of a set is a point z such that there exists a
sequence zn 6= z in Ω which converges to z. Closed sets must contain all
their limit points. The union of Ω and its limit points is the closure of Ω,
denoted Ω̄. The boundary ∂Ω is the closure minus the interior.

A set Ω is bounded if there is an M > 0 such that |z| < M for every
z ∈ Ω. If Ω is bounded, its diameter is

diam(Ω) = sup
z,w∈Ω

|z − w|.

A closed, bounded set is compact. Just as with the reals, a set Ω ⊂ C is
compact if and only if ever sequence of complex numbers in Ω has a subse-
quence that converges in Ω.
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An open covering is a family of open sets {Uα} such that

Ω ⊂
⋃
Uα.

As with the reals, a set is compact if and only if every open cover has a
finite subcover.

We also introduce the nested set property – that for a sequence of
nonempty compact sets Ω1 ⊃ ... of decreasing diameter, there exists some
w ∈ Ωn for every n.

Finally, an open set is connected if it is not possible to find two disjoint,
nonempty open sets Ω1 and Ω2 such that Ω1 ∪ Ω2 = Ω.

1.2 Functions on the Complex Plane

1.2.1 Continuous Functions

Continuity

Let f be defined on Ω ⊂ C. f is continuous at z0 ∈ Ω if for every
ε > 0 there exists δ > 0 such that whenever z ∈ Ω and |z − z0| < δ
then |f(z) − f(z0)| < ε. An equivalent definition is that for every
{zn} → z0, f(zn)→ f(z0). f is continuous if it is continuous at every
z ∈ Ω.

if f is continuous then the real-valued function z → |f(z)| is also con-
tinuous. f attains a maximum at the point z0 ∈ Ω if, for all z ∈ Ω,
|f(z)| ≤ |f(z0)|.

Extreme Value Theorem

A continuous function on a compact set Ω is bounded and attains a
maximum and minimum on Ω.

1.2.2 Holomorphic Functions

Here we introduce the concept of the holomorphic function, the term for
complex differentiability.
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Holomorphic Functions

Let Ω be open in C and f a complex-valued function on Ω. The
function f is holomorphic at z0 ∈ Ω if the quotient

f(z0 + h)− f(z0)

h

converges to a limit as h→ 0. This limit, if it exists, is written f ′(z0)
and is called the derivative of f at z0. Since h is complex, it may
converge to 0 from any direction.

f is holomorphic on Ω if f is holomorphic at every z ∈ Ω. If C ⊂ C is a
closed set, then f is holomorphic on C if f is holomorphic on Ω ⊃ C, Ω ⊂ C.
If f is holomorphic on all of C then we say f is entire. We sometimes refer
to holomorphic functions as analytic, since it is true that every holomor-
phic function has a power series expansion near every point.

Here are some key properties of holomorphic functions; assume f and g
are holomorphic in Ω.

(i) f + g is holomorphic in Ω and (f + g)′ = f ′ + g′;

(ii) fg is holomorphic in Ω and (fg)′ = f ′g + fg′;

(iii) If g(z0) 6= 0 then f/g is holomorphic in Ω and

(f/g)′ =
f ′g − fg′

g2
.

(iv) If f : Ω → U and g : U → C are holomorphic, then the chain rule
holds:

(g ◦ f)′(z) = g′(f(z))f ′(z).

Real and complex differentiability differ significantly. The map f(z) = z cor-
responds to the map in R2 F : (x, y) 7→ (x,−y), which is real-differentiable.
However, we see that f(z) = z is not holomorphic, since

f(z0 + h)− f(z0)

h
=
h

h

which has no limit as h→ 0; if h is real then the limit is 1, andd if h is pure
imaginary then the limit is −1.
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Instead, we relate to each complex function f : u+iv the mapping F (x, y) =
(u(x, y), v(x, y)) from R2 to R2. This is then differentiable via the Jacobian:

J = JF (x, y) =

(
∂u/∂x ∂u/∂y
∂v/∂x ∂v/∂y

)
.

Cauchy-Riemman Equations

Using our definition of holomorphism, and having h→ 0 with h purely
real and h pure imaginary, we see that in the first case f ′(z0) = ∂f

∂x (z0)

and in the latter f ′(z0) = 1
i
∂f
∂y (z0). We can find the partial derivatives

with respect to u and v by separating the real and imaginary parts of
f = u + iv, yielding the following nontrivial relations (the Cauchy-
Riemann equations):

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

Suppose f = u+ iv is a complex-valued function defined on an open set Ω.
If u and v are continuously differentiable and satisfy the Cauchy-Riemann
equations on Ω, then f is holomorphic on Ω and f ′(z) = ∂f/∂z.

If f is holomorphic at z0, then

∂f

∂z̄
(z0) = 0 and f ′(z0) =

∂f

∂z
(z0) = 2

∂u

∂z
(z0).

If we write F (x, y) = f(z), then F is differentiable in the sense of the reals
and

det JF (x0, y0) = |f ′(z0)|2.

1.2.3 Harmonic Functions

The Laplacian operator ∆ is defined as

∆ =
∂2

∂x2
+

∂2

∂y2
.

A function f such that ∆f = 0 is harmonic. If f is holomorphic in the
open set Ω, then the real and imaginary parts of f are harmonic.
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1.2.4 Power Series

Consider the power series for the complex exponential function,

ez =
∞∑
n=0

zn

n!
.

For z ∈ R, this is precisely the same as the normal real exponential; further-
more this series converges absolutely for every z ∈ C.

In general, a power series is an expansion of the form

∞∑
n=0

anz
n,

an ∈ C. We test for absolute convergence by examining

∞∑
n=0

|an||z|n,

noting that if the series converges for some z0 it converges for all z in the
disc |z| ≤ |z0|.

Radius of Convergence

Given a power series
∑
anz

n, there exists some 0 ≤ R ≤ ∞ such that
the series converges absolutely if |z| < R, and diverges if |z| > R.
R is the radius of convergence and |z| is the disc of convergence.
R is, as in real analysis, given by Hadamard’s formula

1/R = lim sup |an|1/n.

Further examples include the sin and cos functions, which are analogous to
their real counterparts:

cos z =
∞∑
n=0

(−1)n
z2n

(2n)!
sin z =

∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
.

Some substitution simplifies these to

cos z =
eiz + e−iz

2
, sin z =

eizz − e−iz

2
,
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known as the Euler formulas.

The power series f(z) =
∑∞

n=0 anz
n defines a holomorphic function within

its disc of convergence. We can find the derivative on this disc by differen-
tiating each term of the series individually:

f ′(z) =
∞∑
n=0

nanz
n−1.

Furthermore, the radius of convergence of f ′ is the same as the radius of
convergence of f . As a result, a power series is infinitely complex differen-
tiable within its disc of convergence.

Note that we are also allowed to translate the power series, i.e. we may
have a power series at a point z0, at which point all the above still hold,
substituting (z − z0) for z (i.e. f(z) =

∑
an(z − z0)n). A function on an

open set Ω is analytic if there exists a power series centered at z0 with
positive radius of convergence such that

f(z) =
∞∑
n=0

an(z − z0)n

for all z in the neighborhood of z0.

1.3 Integration along Curves

Just like in metric differential geometry (see my Math140 notes), we have to
distinguish between the parametrization of a curve (the mapping [a, b]→
C which is non-unique) and its geometry (the unique object (with orien-
tation) in the plane)). A parameterized curve is a function z(t) mapping
a closed interval to the complex plane. A parameterized curve is smooth
if z′(t) exists and is continuous on [a, b], and z′(t) 6= 0 for t ∈ [a, b]. At the
points t = a and t = b, the quantities z′(a) and z′(b) are interpreted as the
one-sided limits

z′(a) = lim
h→0
h>0

z(a+ h)− z(a)

z(h)
, z′(b) = lim

h→0
h<0

z(a+ h)− z(a)

h
.

A curve is piecewise smooth if it is smooth on each interval in a parti-
tion of [a, b]. Two parametrizations z and z̃ are equivalent if there exists
a continuous bijection s 7→ t(s) so that t′(s) > 0 and z̃(s) = z(t(s)). The
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family of all parametrizations equivalent to z(t) is a smooth curve γ ⊂ C
(γ− is γ with orientation reversed). A piecewise smooth curve is defined
analogously. The curve has endpoints z(a) and z(b), and is called closed
if z(a) = z(b). If the curve is not self-intersecting, we call it simple. We
call any piecewise smooth curve a “curve” for brevity.

As an example, let’s look at the circle

Cr(z0) = {z ∈ C : |z − z0| = r}.

The positive orientation (counterclockwise) is the standard parametriza-
tion

z(t) = z0 + reit

for t ∈ [0, 2π]; the negative orientation is z(t) = z0 + re−it.

We now turn our attention to integration.

Integration

Given a smooth curve γ in C parameterized by z : [a, b]→ C, and f ,
a continuous function on γ, the integral of f along γ is∫

γ
f(z)dz =

∫ b

a
f(z(t))z′(t)dt.

This definition is independent of the parameterization of γ.

If γ is piecewise smooth, then we sum the integrals over the smooth parts
of γ: ∫

γ
f(z)dz =

n−1∑
k=0

∫ ak+1

ak

f(z(t))z′(t)dt.

The length of the smooth curve is

length(γ) =

∫
γ
|z′(t)|dt.

We then have the following properties:

(i) Integration is linear, meaning∫
γ
(αf(z) + βg(z))dz = α

∫
γ
f(z)dz + β

∫
γ
g(z)dz.
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(ii) If γ− is the reverse of γ:∫
γ
f(z)dz = −

∫
γ−
f(z)dz.

(iii) The following inequality holds:∣∣∣∣∫
γ
f(z)dz

∣∣∣∣ ≤ sup
z∈γ
|f(z)| · length(γ).

A primitive for f on an open set Ω is a function F that is holomorphic
on Ω and such that F ′(z) = f(z) for all z ∈ Ω. From this we get a kind of
analog to the Fundamental Theorem of Calculus; namely that if a continuous
function has primitive F in Ω and begins at w1 and ends at w2, and γ is a
curve in Ω, then ∫

γ
f(z)dz = F (w2)− F (w1).

We also introduce Cauchy’s theorem, the main focus of the next chapter;
namely, if γ is a closed curve in an open set Ω, and f is continuous with a
primitive in Ω, then ∮

γ
f(z)dz = 0.

As a final remark, if f is holomorphic in Ω and f ′ = 0, then f is a constant.

2 Cauchy’s Theorem and its Applications

This section deals with one of the most fundamental results in complex
analysis, mentioned at the end of the last section.

Cauchy’s Theorem

If f is holomorphic in an open set Ω, and γ ⊂ Ω is a closed curve
whose interior is contained in Ω, then∮

γ
f(z)dz = 0.

A rigorous explanation for what this means (i.e. what it means to be
on the “interior” of the curve) is left for later in study; in this section,
we instead use toy contours, which are contours whose geometries
are so straightforward and unambiguous to where Cauchy’s theorem
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can be proved directly.

2.1 Goursat’s Theorem

Goursat’s Theorem

If Ω is an open set in C, and ∆ ⊂ Ω a triangle whose interior is also
in Ω, then ∮

∆
f(z)dz = 0

whenever f is holomorphic in Ω.

As a corollary, the result is the same if we instead integrate over a rectangle
R ⊂ Ω.

2.2 Local Existence of Primitives and Cauchy’s Theorem in
a Disc

As a consequence of the Goursat’s theorem, we conlude that a holomor-
phic function in an open disc must have a primitive in that disc. Cauchy’s
theorem for a disc then states that if f is holomorphic in a disc, then∮

γ
f(z)dz = 0

for any closed curve γ in that disc. Additionally, if f is holomorphic in an
open set containing the circle C (and its interior), then∮

C
f(z)dz = 0.

More generally, this theorem applies whenever we can define the interior of
a contour without ambiguity, and additionally draw a path between points
within the contour using only vertical and horizontal segments (also within
the contour). We call these horizontal and vertical paths polygonal paths.
A toy contour is any closed curve where the notion of an interior is obvious,
and a polygonal path can be drawn in its interior. An example of a toy
contour is the following “keyhole,” denoted Γ, which consists of two almost
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complete circles connected by a corridor.

.

As before, ∫
Γ
f(z)dz = 0.

2.3 Cauchy’s Integral Formulas and Liouville’s Theorem

Cauchy’s Integral Formula

Suppose f is holomorphic in an open set that contains the closure
of a disc D. If C denotes the boundary circle of this disc with the
positive orientation, then

f(z) =
1

2πi

∮
C

fζ

ζ − z
dζ, ∀z ∈ D.

From this we may arrive at another property for holomorphic functions,
namely their regularity – the fact that there exists no point in their do-
main where all partial derivatives are 0.

If f is holomorphic in an open set Ω, then f has infinitely many com-
plex derivatives in Ω. Moreover, if C ⊂ Ω is a circle whose interior is also
contained in Ω, then

f (n)(z) =
n!

2πi

∮
C

fζ

(ζ − z)n+1
dζ

for all z in the interior of C. The above equations are collectively known as
Cauchy’s integral formulas.
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Cauchy’s Inequalities

If f is holomorphic in an open set that contains the closure of a disc
D centered at z0 with radius R, then

|f (n)(z0)| ≤ n!‖f‖C
Rn

,

where ‖f‖C is the supremum of |f | on the boundary circle C.

Moreover, f has power series expansion at z0

f(z) =

∞∑
n=0

an(z − z0)n

where

an =
f (n)(z0)

n!
.

Liouville’s Theorem

If f is entire and bounded, then f is constant. This is a natural con-
sequence of Cauchy’s inequalities. As a corrolary, every non-constant
polynomial P (z) with complex coefficients has a root in C. More
specifically, every polynomial of degree n ≥ 1 has exactly n roots in
C.

Finally, we conclude this section with a discussion of analytic continua-
tion. Suppose f is holomorphic in a region Ω that vanishes on a sequences
of distinct points with a limit point in Ω; then f is identically zero. More
generally, if f and g are holomorphic in Ω and f(z) = g(z) for all z in
a non-empty open subset of Ω, then f(z) = g(z) on all of Ω. If f and
F are holomorphic on Ω and Ω′ respectively such that Ω ⊂ Ω′ and both
functions agree on Ω, then F is the analytic continuation of f into the
region Ω′. Since F is uniquely determined by f , there can only be one such
continuation.

3 Meromorphic Functions and the Logarithm

3.1 Zeros and Poles

A point singularity, also called an isolated singularity, of a function
f is a complex number z0 such that f is defined in a neighborhood of z0
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but not at z0 itself. Singularities often appear because the denominator of
a fraction vanishes. A complex number z0 is a zero for the holomorphic
function f if f(z0) = 0. More specifically, analytic continuation shows the
zeros of a non-trivial holomorphic function are isolated, meaning that there
is a nontrivial neighborhood about each zero whose image is nonzero.

If f is holomorphic in a connected open set Ω with a zero at z0 and does
not vanish identically in Ω, there exists a neighborhood U ⊂ Ω about z0, a
holomorphic non-vanishing function g on U , and a positive integer n such
that

f(z) = (z − z0)ng(z)

for z ∈ U .The number n is the multiplicity at z0 (or that z0 is a zero of
order n). The order describes the rate at which the function vanishes.

The deleted neighborhood about z0 is the r-disc about z0 which excludes
z0. A function f defined in a deleted neighborhood about z0 has a pole at
z0 if 1/f , defined to be 0 at z0, is holomorphic in a full neighborhood of z0.
If f has a pole at z0 ∈ Ω, then in a neighborhood of that point there exist
a non-vanishing holomorphic function h and a positive integer n such that

f(z) = (z − z0)−nh(z).

n is once again the order or multiplicity of the pole z0.

Residues

If f has a pole of order n at z0, then

f(z) =
a−n

(z − z0)n
+

a−n+1

(z − z0)n−1
+ . . .+

a−1

(z − z0)
+G(z)

with G a holomorphic function in a neighborhood of z0. The sum
(excluding G) is the principal part of f at the pole z0 and the
coefficient a−1 is called the residue of f at that pole. We write
resz0f = a−1. The residue is of special importance because all other
terms in the principal part (which we denote P (z)) have primitives
in a deleted neighborhood about z0. This means that if we take C to
be any circle centered at z0,

1

2πi

∮
C
P (z)dz = resz0f.
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If f has a simple pole at z0 then

resz0f = lim
z→z0

(z − z0)f(z).

A similar rule applies for higher order poles; if f has a pole of order n at z0

then

resz0f = lim
z→z0

1

(n− 1)!

(
d

dz

)n−1

(z − z0)nf(z).

3.2 The Residue Formula

Suppose that f is holomorphic in an open set containing a circle C and its
interior, except for a pole at z0 inside C. Then∮

C
f(z)dz = 2πiresz0f.

This can be generalized to finitely many poles, in which case if f has poles
at z1, ..., zn, we have ∮

C
f(z)dz = 2πi

n∑
k=1

reszkf.

More generally, for any toy contour γ, on which f is holomorphic except for
finitely many poles, we have the residue formula:∮

γ
f(z)dz = 2πi

n∑
k=1

reszkf.

We can use the residue formula to evaluate improper Riemann integrals of
the form ∫ ∞

−∞
f(x)dx

by extending f to the complex plane and choosing a family of toy contours
γR such that

lim
r→∞

∮
γR

f(z)dz =

∫ ∞
−∞

f(x)dx.

As an example, take the improper integral∫ ∞
−∞

dx

x2 + 1
dx.
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Now consider the function

f(z) =
1

1 + z2
,

which is holomorphic in C except for two simple poles at ±i. We (somewhat
arbitrarily) pick the toy contour of the upper half-circle of radius R (which,
for large enough R, contains the pole at i). Then the residue of f at i is

resif = lim
z→i

(z − i) 1

(z + i)(z − i)
=

1

2i
;

then by the residue formula we have∮
γR

f(z)dz = 2πi

(
1

2i

)
= π

and the limit agrees with the above.

3.3 Singularities and Meromorphic Functions

Let f be a function holomorphic in an open set Ω except possibly at one
point z0 ∈ Ω. If we can define f at z0 at such a way that f becomes
holomorphic in all of Ω, then we say z0 is a removable singularity.

Riemann’s Theorem on Removable Singularities

Suppose that f is holomorphic in an open set Ω except possibly at a
point z0 in Ω. If f is bounded on Ω − {z0}, then z0 is a removable
singularity.

Any singularity that is not a pole or removable is an essential singularity,
which can occur from wildly oscillating behavior near the singularity.

Casorati-Weierstrass Theorem

Suppose f is holomorphic in the punctured disc Dr(z0) − {z0} and
has an essential singularity at z0. Then, the image of Dr(z0) − {z0}
under f is dense in the complex plane.

Picard proved a much stronger result – that under the above theorem, f
takes on every complex value infinitely many times with at most one excep-
tion (this is called the Great Picard theorem).

A function f on an open set Ω is meromorphic if there is a sequence
of of points {z0, z1, ...} that has no limit points in Ω, and such that
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(i) the function f is holomorphic in Ω− {z0, ...}, and

(ii) f has poles at the points {z0, ...}.

For functions meromorphic in the entire complex plane, we can describe its
behavior at infinity using our tripartite distinction from earlier. If f is holo-
morphic for all large values of z, we consider F (z) = f(1/z), holomorphic
in a deleted neighborhood about the origin. f has a pole at infinity if
F has a pole at the origin; f has an essential singularity at infinity or
removable singularity at infinity based on the behavior of F at 0. A
meromorphic function that is either holomorphic at infinity or has a pole
at infinity is said to be meromorphic in the extended complex plane;
the meromorhpic functions in the extended complex plane are the rational
functions.

3.3.1 The Riemann Sphere

There is a convenient way to map the unit sphere S2 to the complex plane;
consider the unit sphere translated so that the south pole is tangent to
the plane. Then consider a point W on the sphere, and a line originat-
ing from the sphere’s north pole passing through W and intersecting the
complex plane at a point w. The map from W to w is the stereographic
projection of W , which forms a bijective map from the complex plane to
the punctured Riemann sphere (note that the north pole itself cannot be
mapped using this technique). We assign to the north pole the value of ∞,
so that the construction maps the unbounded set C to the compact set S2

through the addition of a single point (hence the equivalent term one-point
compactification).
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3.4 The Argument Principle

The function log f(z) cannot be defined unambiguously on the set f(z) 6= 0.
If we are to give it a definition, we define

log f(z) = log |f(z)|+ i arg f(z);

in either case, its derivative is f ′(z)/f(z) which is well-defined and the in-
tegral ∫

γ

f ′(z)

f(z)
dz

is the change in the argument of f as z traverses γ. Assuming γ is closed,
this value is determined entirely by the zeros and poles inside of γ.

The Argument Principle

Suppose f is meromorphic in an open set containing a circle C and
its interior. if f has no poles and never vanishes in C, then

1

2πi

∮
C

f ′(z)

f(z)
dz = (# of zeros of f inside C)−(# of poles of f inside C)

counted with multiplicities.

Rouché’s Theorem

Suppose f and g are holomorphic in an open set containing a circle
C and its interior. If

|f(z)| > |g(z)|

then f and f + g have the same number of zeros inside C.

A mapping is said to be open if it maps open sets to open sets. The open
mapping theorem states that if f is holomorphic and non-constant in a
region Ω, then f is open.

The maximum of a holomorphic function f in an open set Ω is the max-
imum of its absolute value |f | in Ω. The maximum modulus principle
states that if f is non-constant and holomorphic in a region Ω, then f cannot
attain a maximum in Ω. Suppose Ω has compact closure Ω̄; so long as f is
non-constant and continuous on Ω̄ then

sup
z∈Ω
|f(z)| ≤ sup

z∈Ω̄\Ω
|f(z)|.
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3.5 Homotopies and Simply Connected Domains

Let γ0 and γ1 be two curves in an open set Ω with common end-points. So
if γ0(t) and γ1(t) are parametrizations defined on [a, b], we have

γ0(a) = γ1(a) = α, γ0(b) = γ1(b) = β.

These curves are homotopic in Ω if for each 0 ≤ s ≤ 1 there exists a curve
γs ⊂ Ω parameterized by γs(t) on [a, b] such that for every s, γs(a) = α,
γs(b) = β, and for all t ∈ [a, b],

γs(t)| s=0
= γ0(t), γs(t)| s=1

= γ1(t).

The functions γs(t) are jointly continuous in s ∈ [0, 1] and t ∈ [a, b]. More
intuitively, two curves are homotopic if one curve can be deformed contin-
uously into another without leaving Ω.

If two curves γ0 and γ1 are homotopic in Ω and f is holomorphic in Ω, then∫
γ0

f(z)dz =

∫
γ1

f(z)dz.

A region in the complex plane is simply connected if any two pairs of
curves with the same endpoints in Ω are homotopic in Ω. The punctured
plane, C \ {0} is not simply connected – consider two curves with the origin
between them. It is clear that it is impossible to continuously deform one
curve to the other (holding the endpoints fixed) without passing over 0.

Any holomorphic function in a simply connected domain admits a prim-
itive; from this we get a new version of Cauchy’s theorem: that if f is
holomorphic in the simply connected region Ω, then for any closed curve γ
in Ω ∮

γ
f(z)dz = 0.

20



The above fact that the punctured plane is not simply connected can be
shown by realizing the integral of 1/z over the unit circle in C \ {0} is 2πi,
and not 0.

3.6 The Complex Logarithm

If z = reiθ and we wish the logarithm to be the inverse of the exponential,
then we determine the logarithm to be

log z = log r + iθ.

The issue here is that θ is only uniquely determined up to 2π. We can
therefore only define the complex logarithm locally, and not globally. For
example, suppose z starts at 1, winds around the origin once, and returns
to 1. log z would not return to its original value, but instead be off by a
multiple of 2πi. The logarithm in this way is not single-valued. To make
this function single-valued, we must restrict the set on which it is defined;
this is called the branch of the logarithm.

Branches

Suppose that Ω is simply connected with 1 ∈ Ω and 0 6∈ Ω. Then in
Ω there is a branch of the logarithm F (z) = logΩ(z) so that

(i) F is holomorphic in Ω;

(ii) eF (z) = z for all z ∈ Ω;

(iii) F (r) = log r whenever r ∈ R and near 1.

In this way, the branch logΩ(z) is an extension of the logarithm for
positive numbers. In the slit plane Ω = C \ {(−∞, 0]}, we have the
principal branch of the logarithm

Logz = log r + iθ

with |θ| < π.

Every non-zero complex number w can be written as w = ez. More specifi-
cally, we have the following, which discusses the existence of log f(z) when-
ever f does not vanish. If f is a nowhere vanishing holomorphic function in
a simply connected region Ω, then there exists a holomorphic function g on
Ω such that

f(z) = eg(z).
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The function g can be denoted by log f(z), and uniquely determines a branch
of that logarithm.

3.7 Fourier Series and Harmonic Functions

Suppose f is holomorphic in a disc DR(z0), so that f has power series
expansion

f(z) =

∞∑
n=0

an(z − z0)n

that converges in that disc. The coefficients of the power expansion series
of f are given by:

an =
1

2πrn

∫ 2π

0
f(z0 + reiθ)e−inθdθ

for all n ≥ 0 and 0 < r < R. Moreover:

0 =
1

2πrn

∫ 2π

0
f(z0 + reiθ)e−inθdθ

when n < 0. Since a0 = f(z0), we obtain the following property:

Mean-Value Property

If f is holomorphic in a disc DR(z0) then

f(z0) =
1

2π

∫ 2π

0
f(z0 + reiθ)dθ

for any 0 < r < R. As a consequence, if u = Re(f), then

u(z0) =
1

2π

∫ 2π

0
u(z0 + reiθ)dθ

for any 0 < r < R. u is harmonic whenever f is holomorphic, and this
property is shared by every harmonic function in the disc DR(z0).

4 The Fourier Transform

If f is a function satisfying appropriate conditions, its Fourier transform
is defined by

f̂(ξ) =

∫
R
f(x)e−2πixξdx, ξ ∈ R.
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Its counterpart, the Fourier inversion, also holds:

f(x) =

∫
R
f̂(ξ)e2πixξdξ, x ∈ R.

The Fourier transform performs a basic role in analysis; here, we go further
and illustrate the intimate connection between the Fourier transform and
complex analysis. For a function f , initially defined on the real line, the
possibility of extending that function to a holomorphic one is related to the
extreme decay at infinity of its Fourier transform.

Assume f can be analytically continued in a strip containing the real axis,
such that the integral defining the Fourier transform f̂ converges. For con-
vergence, f̂ must decay exponentially at infinity, an elegant consequence of
contour integration. Secondly, we may then ask for the conditions on f
such that its Fourier transform has bounded support, say on [−M,M ]. This
question can only be resolved in terms of the holomorphic properties of f .
This condition is given in section 4.3.

4.1 The Class F

In other courses, you may have studied the decay conditions of the Fourier
transform, and the class of functions under “moderate decay” (e.g. the
Poisson kernel for solving the Dirichlet problem for the steady-state heat
equation in the upper half-plane). Here, we determine a class of functions
that is large enough to contain many more important applications.

The Class F

For each a > 0, we denote by Fa the class of all functions f such that:

(ii) There exists a constant A > 0 such that

|f(x+ iy)| ≤ A

1 + x2
For all x ∈ R, |y| < a.

(i) The function f is holomorphic in

Sa = {z ∈ C : |Im(z)| < a}.

The class F is the class of all functions that belong to some Fa for
any a.
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4.2 Action of the Transform on F

Here we present three essential theorems that are all rooted in contour in-
tegration.

(i) If f belongs to the class Fa for some a > 0, then

|f̂(ξ)| ≤ Be−2πb|ξ|

for any 0 ≤ b < a.

(ii) (Fourier Inversion Theorem) If f ∈ F, then the Fourier inversion
holds, namely

f(x) =

∫
R
f̂(ξ)e2πixξdξ for all x ∈ R

(iii) (Poisson Summation Formula) If f ∈ F, then∑
n∈Z

f(n) =
∑
n∈Z

f̂(n).

The remainder of this section discusses several important identities that are
critical consequences of the aforementioned identities.

First, recall that the function e−πx
2

is its own Fourier transform:∫
R
e−πx

2
e−2πixξdx = e−πξ

2
.

For fixed values of t > 0 and a ∈ R, the change of variables x 7→ t1/2(x+ a)
above shows that the Fourier transform is then

f(x) = e−πt(x+a)2 ⇐⇒ f̂(ξ) = t−1/2e−πξ
2/te2πiaξ.

Then using the Poisson summation formula yields the relation∑
n∈Z

e−πt(n+a)2 =
∑
n∈Z

t−1/2e−πn
2/te2πina.

In the above identity, the assignment a = 0 yields the transformation law
for a version of the theta function. If we define, for t > 0, the series

ϑ(t) =
∑
n∈Z

e−πn
2t,

then by the above relation we may write

ϑ(t) = t−1/2ϑ(1/t),

a key result that will be used in the next chapter to derive the functional
equation for the Riemann-Zeta function and its analytic continuation.
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4.3 Paley-Wiener and Phragmén-Lindelöf

In this section we reverse our thinking – we do not suppose any analyticity
of f , but we do assume the validity of the inversion formula.

Suppose f̂ satisfies the decay condition |f̂(ξ)| ≤ Ae−2πa|ξ| for some constants
a,A > 0. Then f(x) is the restriction to R of a function f(z) holomorphic
in the strip

Sb = {z ∈ C : |Im(z)| < b}

for any 0 < b < a. As a corollary, if f̂(ξ) = O(e−2πa|ξ|) for some a > 0, and
f vanishes in a non-empty open interval, then f = 0.

Paley-Wiener Theorem

Suppose f is continuous and of moderate decrease on R. Then f has
an extension to the complex plane that is entire with

|f(z) ≤ Ae2πM |z|

for some A > 0, if and only if f̂ is supported on the bounded interval
[−M,M ].

Phragmén-Lindelöf Principle for Complex Sectors

Suppose F is a holomorphic function in the sector

S = {z : −π/4 < arg z < π/4}

that is continuous on the closure of S. Assume |F (z)| ≤ 1 on the
boundary of the sector, and that there are constants C, c > 0 such
that |F (z)| < Cec|z| for all z in the sector. Then

|F (z)| < 1 for all z ∈ S.

In other words, if F is bounded by 1 on the boundary of a sector S
and has an at most reasonable amount of growth, then F is bounded
everywhere by 1. The growth condition is required; the function ez,
for example, is unbounded on the real line. This theorem may be
thought of as a kind of “generalization” of the maximum modulus
principle.

25



5 The Gamma and Zeta Functions

The gamma and zeta functions are among the most important nonelemen-
tary functions in mathematics. The function 1/Γ(s) is the simplest entire
function, with zeros at exactly 0,−1,−2, .... The zeta function ζ has a huge
role in the analytic theory of numbers, and is intimately connected with
the prime numbers. We also discuss the theta and xi functions, which are
variants of the zeta function that add other interesting symmetries.

5.1 The Gamma Function

For s > 0, the gamma function Γ is

Γ(s) =

∫ ∞
0

e−tts−1dt.

This integral converges for s > 0 due to the integrability of ts−1 near the
origin and the exponential decay of e−t as t tends to infinity. The gamma
function extends to an analytic function in the half-plane Re(s) > 0 and is
still given by the above integral formula.

5.1.1 Analytic Continuation

The integral defining Γ is not absolutely convergent for other values of s;
however, we may use analytic continuation to find a meromorphic function
on all of C that equals Γ in Re(s) > 0.

To this end, through integration by parts we may determine the following
relation, that if Re(s) > 0, then

Γ(s+ 1) = sΓ(s)
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and as a consequence Γ(s) = (n− 1)! for all non-negative integers n. From
this, Γ has an analytic continuation to a meromorphic function on C whose
singularities are exclusively simple poles at the negative integers s = 0,−1, ...
The residue of Γ at s = −n is res−n(Γ) = (−1)n/n!.

5.1.2 Properties of Γ

Γ is symmetric about the line Re(s) = 1/2. For all s ∈ C,

Γ(s)Γ(1− s) =
π

sinπs
.

Γ(1 − s) has simple poles at all positive integers, so Γ(s)Γ(1 − s) is mero-
morphic with simple poles at every integer, a property shared by π/ sinπs.
This can be proven using the lemma that, for 0 < a < 1,∫ ∞

0

va−1

1 + v
dv =

π

sinπa
.

We continue our study with the study of the reciprocal of the gamma func-
tion, which is entire. The function Γ has the following properties:

(i) 1/Γ is an entire function of s with simple zeros at exclusively the non-
positive integers

(ii) 1/Γ(s) has growth ∣∣∣∣ 1

Γ(s)

∣∣∣∣ ≤ c1exp {c2|s| log |s|} ,

meaning that for every ε > 0 there exists a bound c(ε) such that∣∣∣∣ 1

Γ(s)

∣∣∣∣ ≤ c1exp
{
c2|s|1+e

}
.

The growth condition on 1/Γ leads to the product formula for 1/Γ :

1

Γ(s)
= eγs

∞∏
n=1

(
1 +

s

n

)
e−s/n,

where γ is the real number known as the Euler-Mascheroni constant and
is given by

γ = lim
N→∞

N∑
n=1

1

n
− logN.
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5.2 The Riemann Zeta Function

The Riemann zeta function is given by the convergent series

ζ(s) =

∞∑
n=1

1

ns
.

As with γ, ζ can be extended to the complex plane via a simple extension
to the complex half plane. The series defining ζ(s) converges for Re(s) > 1
and the function ζ is holomorphic in this half-plane. This convergence can
be shown by analyzing the quantity |n−s| given that s = σ + it for σ, t ∈ R.

The analytic continuation of ζ to a meromorphic function is more subtle
than that of Γ. To this end, we make use of the theta function (men-
tioned in the previous chapter), defined for t > 0 as

ϑ(t) =
∑
R
e−πn

2t,

with functional equation

ϑ(t) = t−1/2ϑ(1/t).
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5.2.1 The Riemann Xi Function

The Riemann xi function is a modification of the Riemann zeta function
to make it more symmetric. It is a relationship between the gamma, zeta,
and theta functions as follows:

ξ(s) = π−s/2Γ(s/2)ζ(s) =
1

2

∫ ∞
0

u(s/2)−1[ϑ(u)− 1]du.

ξ(s) is holomorphic for Re(s) > 1 with an analytic continuation to C as
a meromorphic function with simple poles at s = 0 and s = 1. ξ(s) has
the property that ξ(s) = ξ(1 − s). This definition of ξ directly yields the
analytic continuation and functional form of the Riemann zeta function; the
zeta function has a meromorphic continuation into the complex plane whose
only singularity is a simple pole at s = 1. The meromorphic continuation in
question is then

ζ(s) = πs/2
ξ(s)

Γ(s/2)
.

A more elementary approach to analytic continuity helps clarify the growth
properties of ζ near the line Re(s) = 1; it helps give clarity to the nature
of the zeros of ζ, and the famous unsolved Riemann hypothesis – that
all the zeros of ζ in the critical strip between Re(s) = 0 and Re(s) = 1
lie on the line Re(s) = 1/2. The idea compares the sum

∑∞
n=1 n

−s with∫∞
1 x−sdx. We propose that there exists a sequence of functions {δn(s)}∞n=1

that satisfy |δn(s)| ≤ |s|/nσ+1 for s = σ + it, such that∑
1≤n<N

1

ns
−
∫ N

1

dx

xs
=

∑
1≤n<N

δn(s).
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As a consequence,

ζ(s)− 1

s− 1
= H(s)

for H(s) =
∑∞

n=1 δn(s) is holomorphic in Re(s) > 0. This idea can be
iterated upon to yield a continuation into not just the real-positive half-
plane, but to all of C.
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